

Categorisation of Outburst Indicators for Prediction at Metropolitan Colliery

Luke Tonegato 17/11/2016

Foreword

Opinions and conclusions expressed in this presentation are my own based on my research, and not those of Peabody Energy nor any Peabody employees

Background

Over 150 outbursts (Harvey 2002)

First outburst in 1895

Last in 2015

3 Fatal incidents (1896, 1925, 1954)

7 total fatalities

Current Management Approach

Outburst is managed in a controlled manner with contemporary methodologies

- Gas drainage & compliance coring
- Threshold criteria
- Geological assessment
- Roles and responsibilities
- Management Plans

Overview

To identify factors that are predictive for outburst events at Metropolitan Colliery

Including:

Geotechnical

Geological

Operational

Overview

Methodology

Recorded Incidents

Recorded Incidents

Recorded Incidents

Metropolitan Colliery Threshold Limit - With outbursts

% Methane (rest is Carbon Dioxide)

Outburst ID	Maximum Core Sample at OB site (m³/t)	Gas Drainage Summary	
44 (1994)	17.7	Core sample drill holes not surveyed, actual core site 30 metres off centre	

Outburst 44

Outburst 44

Outburst ID	Maximum Core Sample at OB site (m³/t)	Gas Drainage Summary	
44 (1994)	17.7	Core sample drill holes not surveyed, actual core site 30 metres off centre	
46 (2007)	13.07	Boggy hole prevented drainage where outburst occurred Cores passed on right hand side	

Outburst 46

Outburst 46

Outburst ID	Maximum Core Sample at OB site (m³/t)	Gas Drainage Summary	
44 (1994)	17.7	Core sample drill holes not surveyed, actual core site 30 metres off centre	
46 (2007)	13.07	Boggy hole prevented drainage where outburst occurred. Cores passed on right hand side	
47 (2016)	8.34	Gas drainage unable to lower core content	
48 (2016)	8.35	Gas drainage unable to lower core content on inbye side of structure, encountered boggy conditions whilst drilling	

Stress Angles surrounding Outburst Sites

UNIVERSITY OF

Outbursts consistent with disturbed zones

Includes soft coal, mylonite, crushed coal, intense jointing

Caused by origin of fault

Influences gas environment

Analysis

Geological Disturbances

Analysis *Grunching*

Hargraves, Hindmarsh & McCoy (1964)

Analysis *Grunching*

Causes:

Areas had high gas content
Shimmering
Charges blown out

Grunching procedure

Analysis *Grunching*

Grunching (structure)

Occurred due to problems with drainage

Grunching outbursts larger in size

Other outbursts reported as 'slumpings'

Conclusions

The influence of gas and the importance of minimising the effects of this hazard

- Gas quantities and TLV's are a critical parameter
- Quality, control and effectives of gas drainage is key to a successful management plan

Outbursts and structures

- Associated commonly with disturbed zone
- Ability of structure parameters to change

Distribution of stress and its interaction with outbursts

• Stress distribution more important than amount of stress

Grunching and its ability to influence outbursts

Remains viable protection technique

Recommendation

Recording and Storing Data

Documenting details

Maintaining systematic database

- Site specific
- Technical parameters
- Operational parameters

Manage and predict future outbursts

Recommendation

UNIVERSITY OF WOLLONGONG AUSTRALIA

Recording and Storing Data

Information [□]	Gas⊡	Geological Disturbances 2	Cavity 2	
Identification 2	Primary ৄ gas⊡	Structure	Location (L/R/Face)	
Date?	GasamakeI(%ICO2)II	Name?	VolumeI(m³)I	
2	Gas��uantity��in-seam)��	SurfaceIILineamentI(Y/N,IName)	Description 2	
Location [®]	?	Structure ype?	Cavityanglesa¶Acute/Obtus	
Co-ordinates (MGA)	Seam i tructure2	Strike ∄º GN)₪	?	
Mine@ocation?	Seamathicknessa(m)	Vertical团isplacementৰ(m) ᠌	Pre-mining [®]	
Mining⊞direction¶ºGN)⊡	Depthabfatoveram)2	Dip ∄ º)?	Extraction@method@	
?	Roof®trata@	Distance团oßtructure데m)②	Changes@to@nvironment@	
Intensity ②	Floor ® trata ②	Angleঞিfাঞ্জিncidenceট্রাঞ্)ি	- Changes@ostrata@	
Tonnesaeleasedat)?	Dipt͡かf͡aoadwayt̄(º)͡?	StructureAngleSideII(L/R)	conditions - ChangesItoIgasIteleaseI	
Gasaeleaseda(m³)a	Coal Properties 2	Mylonite(Y/N,Thickness)(2	Changes do do al properChanges do do al proper	
Soundadurationa(s)	Major®tress®direction@ºGN)®	Slickenslides (Y/N) 2	Hazard@ecognition@	
Sound description 2	Stress@ncidence@@@@	ZoneIthicknessI(m)[2	- GasiDrainagei	
母or団団団団の動のtes®onのtextpage回	Stress@Angle@side@f@(L/R)@	Properties?	- Coring2 - Structure2prediction2	

Questions?

References:

Harvey, C 2002, 'History of outbursts in Australia and current management controls', *Coal Operators' Conference*, pp 36-46.

Hargraves, A, Hindmarsh, J, & McCoy, A 1964, 'The control of intantaneous outbursts at Metropolitan Colliery, NSW